Abstract

We present a new numerical method for accurate computations of solutions to (linear) one‐dimensional Schrödinger equations with periodic potentials. This is a prominent model in solid state physics where we also allow for perturbations by nonperiodic potentials describing external electric fields. Our approach is based on the classical Bloch decomposition method, which allows us to diagonalize the periodic part of the Hamiltonian operator. Hence, the dominant effects from dispersion and periodic lattice potential are computed together, while the nonperiodic potential acts only as a perturbation. Because the split‐step communicator error between the periodic and nonperiodic parts is relatively small, the step size can be chosen substantially larger than for the traditional splitting of the dispersion and potential operators. Indeed it is shown by the given examples that our method is unconditionally stable and more efficient than the traditional split‐step pseudospectral schemes. To this end a particular focus is on the semiclassical regime, where the new algorithm naturally incorporates the adiabatic splitting of slow and fast degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.