Abstract

A good language model is essential to a postprocessing algorithm for recognition systems. In the past, researchers have presented various language models, such as character based language models, word based language model, syntactical rules language model, hybrid models, etc. The word N-gram model is by far an effective and efficient model, but one has to address the problem of data sparseness in establishing the model. Katz and Kneser et al. respectively presented effective remedies to solve this challenging problem. In this study, we proposed an improvement to their methods by incorporating Chinese language-specific information or Chinese word class information into the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.