Abstract

The operating principle of a novel microwave plasma source—a linear microwave vibrator with a gap—is discussed. The source is placed on a microwave-transparent window of a chamber filled with a plasma-forming gas (argon or methane). The device operation is based on the combination of two resonances—geometric and plasma ones. The results of experimental tests of the source are presented. For a microwave frequency of 2.45 GHz, microwave power of ≤1 kW, and plasma-forming gas pressure in the range 5 × 10−2–10−1 Torr, the source is capable of filling the reactor volume with a plasma having an electron density of about 1012 cm−3 and electron temperature of a few electronvolts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.