Abstract
A promising application of carboxymethyl cellulose (CMC), which is a congener of the cellulose family, as a supporting material for a variety of imidazolium based ionic liquid catalysts in the chemical fixation of CO2 has been studied here. The ionic liquids immobilized on the carboxymethyl cellulose (CMIL) showed high catalytic activity and selectivity in the cycloaddition of carbon dioxide with propylene oxide (PO) resulting in propylene carbonate (PC) under mild and solvent free conditions. A new pathway was proposed based on the density functional theory (DFT) calculations performed at the B3LYP/6-31G (d,p) level, where the carboxyl and hydroxyl moieties on the CMC were found to act synergistically with the halide ions to eventuate in the cycloaddition reaction. The carboxyl group entities on the carboxymethyl cellulose support supposedly stabilize the product complex via strong hydrogen bonds, thereby promoting the reaction. The catalyst system also displayed good reusability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.