Abstract

Malassezia furfur isolates from diseased skin preferentially biosynthesize compounds which are among the most active known aryl-hydrocarbon receptor (AhR) inducers, such as indirubin, tryptanthrin, indolo[3,2-b]carbazole, and 6-formylindolo[3,2-b]carbazole. In our effort to study their production from Malassezia spp., we investigated the role of indole-3-carbaldehyde (I3A), the most abundant metabolite of Malassezia when grown on tryptophan agar, as a possible starting material for the biosynthesis of the alkaloids. Treatment of I3A with H2O2 and use of catalysts like diphenyldiselenide resulted in the simultaneous one-step transformation of I3A to indirubin and tryptanthrin in good yields. The same reaction was first applied on simple indole and then on substituted indoles and indole-3-carbaldehydes, leading to a series of mono- and bisubstituted indirubins and tryptanthrins bearing halogens, alkyl, or carbomethoxy groups. Afterward, they were evaluated for their AhR agonist activity in recombinant human and mouse hepatoma cell lines containing a stably transfected AhR-response luciferase reporter gene. Among them, 3,9-dibromotryptanthrin was found to be equipotent to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as an AhR agonist, and 3-bromotryptanthrin was 10-times more potent than TCDD in the human HG2L7.5c1 cell line. In contrast, 3,9-dibromotryptanthrin and 3-bromotryptanthrin were ∼4000 and >10,000 times less potent than TCDD in the mouse H1L7.5c3 cell line, respectively, demonstrating that they are species-specific AhR agonists. Involvement of the AhR in the action of 3-bromotryptanthrin was confirmed by the ability of the AhR antagonists CH223191 and SR1 to inhibit 3-bromotryptanthrin-dependent reporter gene induction in human HG2L7.5c1 cells. In conclusion, I3A can be the starting material used by Malassezia for the production of both indirubin and tryptanthrin through an oxidation mechanism, and modification of these compounds can produce some highly potent, efficacious and species-selective AhR agonists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.