Abstract

This paper proposes a multiple microfluidic streambased manipulation (MMSM) system for bio-objects. It uses micro hydrodynamics and lab on chip (LOC) technology. Our method can implement the functions of micro manipulation and micro assembly of bio-objects in an open space without contact. Compared to other conventional bio-micro-manipulation and assembly methods, this system manipulates micro objects by controlling multiple microfluidic streams onto them from various directions. The advantages of this method are that it performs open space, multifunction, multi-scale, multi-degree-of-freedom, and non-invasive 3D manipulation. These microfluidic streams are generated simultaneously from multiple orifices. By regulating the parameters of the microfluidic stream, such as the position and number of operating orifices and the flow rate, the direction and velocity of the object can be controlled. To verify this principle, we design an open-space fluidic system for on-chip manipulation and calculated velocity and direction of the microfluidic stream using CFD simulation. Then the prototype microchip with an array of nine orifices is fabricated from glass. In experiments, demonstrations of rectilinear motion of a single cell andmicro particle are observed. The results presented in this paper show that this MMSM is capable of biomicromanipulation and micro assembly of bio-objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.