Abstract
Activation of hypoxia-inducible factor-1 (HIF-1) is the primary defensive mechanism against hypoxia. HIF-1 activation generally occurs in pathologic disruption of tissue oxygenation. However, a biologic role of HIF-1 in the medulla of the kidney, which is considered perpetually hypoxic under physiologic conditions due to its unique circulation, remains to be elucidated. The expression of HIF-1alpha was detected by immunohistochemical analysis. Functional studies of HIF in medulla were carried out by gene transfer of various plasmids by retrograde injection via ureter. Our immunohistochemical analysis detected HIF-1alpha in the inner stripe and the inner medulla of normal rats. Water deprivation increased the number of HIF-1alpha-positive cells, which may be mediated by an increase in medullar workload and a decrease in local blood flow. To perform functional studies, we performed gene transfer. Efficient expression of the transgene was confirmed using an enhanced green fluorescent protein (E-GFP) expressing vector. Our histologic and immunoblotting analysis detected the transgene product at the inner medulla and the inner stripe 48 hours after injection. Administration of negative-dominant HIF induced severe damage in the medulla of normal rats. In contrast, gene transfer of constitutively active HIF (HIF/VP16) induced expression of various HIF-regulated genes and protected the medulla against ischemic insults. Our studies demonstrated a crucial role of HIF in the renal medulla under normal and hypoxic circumstances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.