Abstract

Functional materials obtained through green and sustainable routes are attracting particular attention due to the need to reduce the environmental impact of the chemical industry. In this work we propose a bioinspired approach for the preparation of alginate fibers containing silver nanoparticles (AgNPs), to be used for antimicrobial purposes. We demonstrate that filiform polymeric structures with length of a few meters can be easily obtained by extruding an alginate solution in an aqueous Ag+-containing bath (i.e. wet spinning) and that treating the fibers with freshly-squeezed lemon juice leads to the formation of AgNPs homogeneously distributed within the polymeric network. Using mixtures of ascorbic and citric acid to mimic lemon juice composition we highlight the influence of the aforementioned molecules on the nanoparticles formation process as well as on the properties of the fibers. Varying the amount of citric and ascorbic acid used for the treatment allows to finely tune the thermal, morphological and water absorption properties of the fibers. This evidence, along with the possibility to easily monitor the preparation through FT-IR spectroscopy, endows the fibers with a high application potential in several fields such as wound healing, water/air purification and agriculture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.