Abstract

Transitioning from intensive, sun-grown to shade-grown coffee systems is promoted as a promising ecosystem-based climate adaptation strategy. Intercropping shade trees with coffee shrubs can produce multiple ecosystem services. Depending on the shade cover levels, however, the joint production of these services might be complementary or competitive based on their impacts on coffee yields. We develop a computational, bioeconomic model to find the range of shade level for which a coffee farmer is better off under a shade-grown system compared to a sun-grown system, in the presence of coffee berry borer (CBB) infestations. We model the plant-level provision of shade-induced pest control services, crop growth services, and timber, and consider in the baseline case a net price premium for shade-grown coffee. Using parameters from coffee regions in Colombia, our baseline simulation results indicate that, in the presence of a CBB infestation, the expected net present values in the shade-grown system can be higher but only for shade cover levels between 11% and 34%. The optimal shading level is 25% in the baseline scenario. It increases to 27% for greater values of crop growth ecosystem services and decreases to 20% in the absence of a price premium for shade-grown coffee.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.