Abstract

The purpose of this study was to assess the ability of the HepG2 cell line to function as a bioassay for metal contamination in sediments, using metallothionein (MT) as a biomarker of exposure. Sediments were collected from the eastern and western ends of Lake Erie, extracted using EPA method 200.7, and analyzed for cadmium (Cd), mercury (Hg) and lead (Pb) levels using ICP-AES. Sediment extracts were neutralized then used at a 2.5% final concentration in the exposure medium. MT levels were measured using the cadmium-hemoglobin affinity assay after a 48 h exposure. Fortified blanks from the ICP protocol served as positive controls. Also, HepG2 cells were exposed to Cd, Pb or combinations of Cd and Pb to determine whether or not induction of MT observed in cells exposed to sediment extracts was due to a single metal, combinations of metals, pH, or some other factor. Additionally, cells were exposed to a range of Cd concentrations approximating the levels found in the extracts (0.0005-0.1mg/L) to determine if a concentration-response occurred. Total metal levels ranged from 527 to 33.5mg/kg with lead the predominant metal, accounting for 100-88.9% of the total quantifiable metals in the sediments. The biomarker response (MT induction) was strongly correlated (r2=0.9919, r2=0.990) with total metal and lead levels in the sediments, respectively, which supports recent field studies indicating the biomarker can discern differences in the strength of the inducing agent. Statistically significant MT induction was associated with sediments which contained measurable Cd concentrations and no significant differences were observed when comparing Cd only and Cd+Pb exposed cells indicating no interactions between Cd and Pb were occurring and supporting our finding that Cd was the main inducing agent in sediment extracts. MT levels also increased significantly in a concentration-dependent manner when cells were exposed only to Cd. Results suggest this human bioassay and the MT biomarker of exposure may be useful for monitoring complex metal mixtures in aquatic sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.