Abstract

Frost is an agro-meteorological event which causes both damage in crops and important economic losses, therefore frost prediction applications (FPA) are very important to help farmers to mitigate possible damages. FPA involves the execution of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid federated Clouds, where custom virtual machines (VM) are launched in appropriate resources belonging to different providers. The goal of this work is to minimize both the makespan and monetary cost. We follow a federated Cloud model where scheduling is performed at three levels. First, at the broker level, a datacenter is selected taking into account certain criteria established by the user, such as lower costs or lower latencies. Second, at the infrastructure level, a specialized scheduler is responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are assigned for execution into the preallocated VMs. Our proposal mainly contributes to implementing bio-inspired strategies at two levels. Specifically, two broker-level schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO), which aim to select the datacenters taking into account the network latencies, monetary cost and the availability of computational resources in datacenters, are implemented. Then, VMs are allocated in the physical machines of that datacenter by another intra-datacenter scheduler also based on ACO and PSO. Performed experiments show that our bio-inspired scheduler succeed in reducing both the makespan and the monetary cost with average gains of around 50% compared to genetic algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.