Abstract

In this work, a novel composite sorbent material for water remediation from oily contaminants, based on a cellulose three-dimensional fibrous scaffold treated with stearic acid and expanded graphite flakes, is presented.The pristine cellulose foams are inherently omniphilic, absorbing indiscriminately both water and oils. However, after being modified with stearic acid and graphite via drop casting, they become superhydrophobic (still preserving their superoleophilic characteristics). As a result, the foams start exhibiting a highly selective behaviour which permits to absorb different kinds of oils and organic solvents, while repelling water completely.Thermal and chemical characterizations reveal that the modification treatment is successfully performed, while the performed mechanical tests demonstrate a good recovery of elasticity after repeated deformations and confirm that the elasticity of the foam is preserved after the treatment. Although based on natural materials, the fabricated foams exhibit oil absorption rate, saturation time and capacity values comparable to those of some synthetic materials with the same aim, exhibiting a very important added value, as it is based on low cost, green and biodegradable materials, requiring, at the same time, low processing costs and providing excellent reusability properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.