Abstract

ABSTRACT An efficient numerical solution of the scattering by planar perfectly conducting or resistive plates is presented. The electric field integral equation is discretized using roof–top subdo–main functions as testing and expansion basis and the resulting system is solved via the biconjugate gradient (BiCG) method in conjunction with the fast Fourier transform (FFT). Unlike other formulations employed in conjunction with the conjugate gradient FFT (CG–FFT) method, in this formulation the derivatives associated with the dyadic Green's function are transferred to the testing and expansion basis, thus reducing the singularity of the kernel. This leads to substantial improvements in the convergence of the solution as demonstrated by the included results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.