Abstract

This paper presents a Dynamic Finite Element (DFE) formulation, based on the Dynamic Stiffness Matrix (DSM) approach, for vibrational analysis of spinning beams. The constituent members are considered to be linearly tapered as well as centrifugally stiffened. A non-dimensional formulation is considered, and the frequency dependent trigonometric shape functions are used to find a single frequency dependent element matrix (called DSM) which has both mass and stiffness properties. An adapted bisection method based on a Sturm sequence root counting technique, is used to find the first four out-of-plane flexural natural frequencies of a cantilevered linearly tapered (in height) beam for different non-dimensional rotating speeds. The results have been compared to those found by finite elements method using Hermite beam elements. Much better convergency rates are found by this method when comparing to conventional finite element methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.