Abstract

The transient receptor potential canonical channel 5 (TRPC5) is a Ca2+-permeable ion channel, which is predominantly expressed in the brain. TRPC5-deficient mice exhibit a reduced innate fear response and impaired motor control. In addition, outgrowth of hippocampal and cerebellar neurons is retarded by TRPC5. However, pharmacological evidence of TRPC5 function on cellular or organismic levels is sparse. Thus, there is still a need for identifying novel and efficient TRPC5 channel modulators.We, therefore, screened compound libraries and identified the glucocorticoid methylprednisolone and N-[3-(adamantan-2-yloxy)propyl]-3-(6-methyl-1,1-dioxo-2H-1λ6,2,4-benzothiadiazin-3-yl)propanamide (BTD) as novel TRPC5 activators. Comparisons with closely related chemical structures from the same libraries indicate important substructures for compound efficacy. Methylprednisolone activates TRPC5 heterologously expressed in HEK293 cells with an EC50 of 12μM, while BTD-induced half-maximal activation is achieved with 5-fold lower concentrations, both in Ca2+ assays (EC50=1.4μM) and in electrophysiological whole cell patch clamp recordings (EC50=1.3 μM). The activation resulting from both compounds is long lasting, reversible and sensitive to clemizole, a recently established TRPC5 inhibitor. No influence of BTD on homotetrameric members of the remaining TRPC family was observed. On the main sensory TRP channels (TRPA1, TRPV1, TRPM3, TRPM8) BTD exerts only minor activity. Furthermore, BTD can activate heteromeric channel complexes consisting of TRPC5 and its closest relatives TRPC1 or TRPC4, suggesting a high selectivity of BTD for channel complexes bearing at least one TRPC5 subunit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.