Abstract

(Background and objectives)Retinal cysts are formed by accumulation of fluid in the retina caused by leakages from inflammation or vitreous fractures. Analysis of the retinal cystic spaces holds significance in detection and treatment of several ocular diseases like age-related macular degeneration, diabetic macular edema etc. Thus, segmentation of intra-retinal cysts and quantification of cystic spaces are vital for retinal pathology and severity detection. In the recent years, automated segmentation of intra-retinal cysts using optical coherence tomography B-scans has gained significant importance in the field of retinal image analysis. The objective of this paper is to compare different intra-retinal cyst segmentation algorithms for comparative analysis and benchmarking purposes. (Methods)In this work, we employ a modular approach for standardizing the different segmentation algorithms. Further, we analyze the variations in automated cyst segmentation performances and method scalability across image acquisition systems by using the publicly available cyst segmentation challenge dataset (OPTIMA cyst segmentation challenge). (Results)Several key automated methods are comparatively analyzed using quantitative and qualitative experiments. Our analysis demonstrates the significance of variations in signal-to-noise ratio (SNR), retinal layer morphology and post-processing steps on the automated cyst segmentation processes. (Conclusion)This benchmarking study provides insights towards the scalability of automated processes across vendor-specific imaging modalities to provide guidance for retinal pathology diagnostics and treatment processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.