Abstract

Three bench-scale rock filters containing 0.6 m of gravel were used in this investigation. Two of the filters were planted withSagittaria Iancifolia andScirpus validus, while the third filter was an unvegetated control filter. The wastewater directed through these systems was a synthetic mixture containing nutrient broth as the carbon source. An 80-day experiment was run on the filters using eight combinations of two flow rates and four influent biochemical oxygen demand (BOD5) concentrations, each combination remaining constant for ten days. These combinations resulted in BOD5 surface loadings from 4.63-30.96 g/day/m(2). From other studies of batch and continuous flow rock-plant filter systems, the first-order BOD5 reaction rate constant was found to decrease exponentially with detention time. In this study, however, little correlation was found between BOD5 loading rate and removal percentages, which averaged 69%, 57%, and 47% for theScirpus, Sagittaria, and control systems, respectively. This is probably due to the relatively small change in detention times studied and the short time period of each loading rate. Oxidation/reduction potential (ORP) and dissolved oxygen (DO) measurements within these systems indicated that no free oxygen was available at any depth. Total Kjeldahl nitrogen (TKN) removal was higher in the plant systems relative to the control, with theScirpus system achieving a higher overall removal than theSagittaria system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.