Abstract
The fault diagnosis of mechanical equipment can prevent potential mechanical failures, avoid property damage and personal injury, and ensure the stable and safe operation of mechanical equipment. Data driven is an important aspect of intelligent fault diagnosis. When data is scarce, it can seriously affect the accuracy of fault diagnosis and make it difficult to ensure the smooth and safe operation of machinery. Faced with this challenge, a classifier-free guidance diffusion model combining hybrid loss and diversity loss (CFGDMHD) is proposed for data augmentation of fault samples. This new data augmentation method generates samples with the same data distribution as real samples from random noise through diffusion process. CFGDMHD can generate multi-class samples simultaneously without the need for additional classifier guidance in the joint training of unconditional diffusion models and conditional diffusion models. This work proposes diversity loss to improve the diversity of generated samples. We conducted experiments using a bearing dataset. The results indicate that the sample quality and diversity generated by this method are excellent, which can help improve the accuracy of fault diagnosis and ensure the safe operation of mechanical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.