Abstract

Millimeter wave (mmWave) and terahertz (THz) frequencies are attractive for increased bandwidth applications, however are vulnerable to blockage and suffer from high pathloss. While the use of directional antennas can potentially mitigate these effects, the need for careful alignment becomes crucial, especially when the user moves. In this context, to ensure a reliable link, several parameters must be taken into account, such as the type of user’s motion, the location of the access point (AP), the shape of the area, the beamwidth, etc. In this work, the link reliability is divided into two main categories, the trajectory tracking resolution and the angular resolution. To address the challenges of both categories, a beam-tracking algorithm that promises high tracking reliability and low pilot overhead is proposed. The algorithm employs multiple cooperating APs and a hierarchical codebook and the performance of the proposed tracking method is evaluated through Monte-Carlo simulations with the probability of success, the average number of pilots per timeslot and the mean square error (MSE) as metrics, for different tracking estimation frequencies and different number of blocked links.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.