Abstract

Bayesian Belief Networks (BBNs) are increasingly used for understanding and simulating computational models in many domains. Though BBN techniques are elegant ways of capturing uncertainties, knowledge engineering effort required to create and initialize the network has prevented many researchers from using them. Even though the structure of the network and its conditional & initial probabilities could be learned from data, data is not always available and/or too costly to obtain. Further, current algorithms that can be used to learn relationships among variables, initial and conditional probabilities from data are often complex and cumbersome to employ. Qualitative-based approaches applied to the creation of graphical models can be used to create initial computational models that can help researchers analyze complex problems and provide guidance/support for decision-making. Once created, initial BBN models can be refined once appropriate data is obtained. This chapter extends the use of BBNs to help experts make sense of complex social systems (e.g., social capital in virtual communities) using a Bayesian model as an interactive simulation tool. Scenarios are used to update the model and to find out whether the model is consistent with the expert’s beliefs. A sensitivity analysis was conducted to help explain how the model reacted to different sets of evidence. Currently, we are in the process of refining the initial probability values presented in the model using empirical data and developing more authentic scenarios to further validate the model. We will elaborate on how database technologies were used to support the current approach and will describe opportunities for future database tools needed to support this type of work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.