Abstract
ABSTRACTThis paper adopts a Bayesian strategy for generalized ridge estimation for high-dimensional regression. We also consider significance testing based on the proposed estimator, which is useful for selecting regressors. Both theoretical and simulation studies show that the proposed estimator can simultaneously outperform the ordinary ridge estimator and the LSE in terms of the mean square error (MSE) criterion. The simulation study also demonstrates the competitive MSE performance of our proposal with the Lasso under sparse models. We demonstrate the method using the lung cancer data involving high-dimensional microarrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.