Abstract

A Bayesian statistics approach for subtraction of incoherent scattering from neutron total-scattering data has been developed and implemented in a public domain software package. In this approach, the estimated background signal associated with incoherent scattering maximizes the posterior probability, which combines the likelihood of this signal in reciprocal and real spaces with the prior that favors smooth lines. The probability distributions are constructed according to the principle of maximum entropy. The method enables robust subtraction of incoherent-scattering backgrounds while providing estimated uncertainties for recovered signals. The developed procedure was first tested using simulated data and then demonstrated using three representative experimental data sets, collected on bulk materials and nanoparticles, featuring distinct ratios of coherent to incoherent scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.