Abstract

This article examines an M[x]/G/1 queueing system with an unreliable server and a repair, in which the server operates a randomised vacation policy with multiple available vacations. Upon the system being found to be empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation with probability 1 − p. When one or more customers arrive when the server is idle, the server immediately starts providing service for the arrivals. It is possible that an unpredictable breakdown may occur in the server, in which case a repair time is requested. For such a system, we derive the distributions of several important system characteristics, such as the system size distribution at a random epoch and at a departure epoch, the system size distribution at the busy period initiation epoch, and the distribution of the idle and busy periods. We perform a numerical analysis for changes in the system characteristics, along with changes in specific values of the system parameters. A cost effectiveness maximisation model is constructed to show the benefits of such a queueing system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.