Abstract

Applying a transparent tool technique the tool/workpiece interface in plane strip drawing of aluminium is studied. The strips are provided with macroscopic lubricant pockets, and the compression and eventual escape of trapped lubricant by the mechanisms Micro Plasto Hydro Dynamic Lubrication (MPHDL) and Micro Plasto Hydrostatic Lubrication (MPHSL) is observed and quantified experimentally with respect to the lubricant pocket parameters, shape, volume, and angle to the edge. The two mechanisms have proved to depend very differently upon these parameters. The level at which the hydrostatic pressure is stabilised is shown to be independent of the volume of a pocket and the MPHDL mechanism is therefore solely dependent on the angle to the edge, which is shown both experimentally and theoretically by a fluid mechanic analysis. For the MPHSL mechanism a dependency of the volume is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.