Abstract

Abstract The stability of free and forced planetary waves in a β plane channel is investigated with a barotropic model. The equilibrium flows that are considered have the gravest possible scale in the meridional direction and a zonal wavenumber of either 1 or 2. The equilibrium-forced waves are the result of the interaction of a constant mean zonal wind over finite-amplitude surface orography. The frequency of all possible small-amplitude perturbations to the equilibrium flows are calculated as a function of the strength of the mean zonal wind and of the amplitude of the orography. The forced zonal-wavenumber-1 flow is found to have three major regions of instability in parameter space, two of which have stationary growing perturbations. The free Rossby wave of that scale is stable for all amplitudes. The forced zonal-wavenumber-2 wave has two adjacent instability domains one on each side of the resonant mean zonal wind. The free wave becomes unstable for sufficiently large amplitudes. The results are int...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.