Abstract

Femtocells have recently appeared as a viable solution to enable broadband connectivity in mobile cellular networks. Instead of redimensioning macrocells at the base station level, the modular installation of short-range access points can grant multiple benefits, provided that interference is efficiently managed. In the case where femtocells use different frequency bands than macrocells (i.e., split-spectrum approach), interference between femtocells is the major issue. In particular, congestion cases in which femtocell demands exceed the available bandwidth pose an important challenge. If, as expected, the femtocell service is going to be separately billed by legacy wire-line Internet Service Providers, strategic interference management and resource allocation mechanisms are needed to avoid performance degradation during congestion cases. In this paper, we model the resource allocation in cooperative femtocell networks as a bankruptcy game. We identify possible solutions from cooperative game theory, namely the Shapley value and the Nucleolus, and show through extensive simulations of realistic scenarios that they outperform two state-of-the-art schemes, namely Centralized-Dynamic Frequency Planning, C-DFP, and Frequency-ALOHA, F-ALOHA. In particular, the Nucleolus solution offers best performance overall in terms of throughput and fairness, at a lower time complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.