Abstract
By integrating multiple cores in a single chip, Chip Multiprocessors (CMP) provide an attractive approach to improve both system throughput and efficiency. This integration allows the sharing of on-chip resources which may lead to destructive interference between the executing workloads. Memorysubsystem is an important shared resource that contributes significantly to the overall throughput and power consumption. In order to prevent destructive interference, the cache capacity and memory bandwidth requirements of the last level cache have to be controlled. While previously proposed schemes focus on resource sharing within a chip, we explore additional possibilities both inside and outside a single chip. We propose a dynamic memory-subsystem resource management scheme that considers both cache capacity and memory bandwidth contention in large multi-chip CMP systems. Our approach uses low overhead, non-invasive resource profilers that are based on Mattson's stack distance algorithm to project each core's resource requirements and guide our cache partitioning algorithms. Our bandwidth-aware algorithm seeks for throughput optimizations among multiple chips by migrating workloads from the most resource-overcommitted chips to the ones with more available resources. Use of bandwidth as a criterion results in an overall 18% reduction in memory bandwidth along with a 7.9% reduction in miss rate, compared to existing resource management schemes. Using a cycle-accurate full system simulator, our approach achieved an average improvement of 8.5% on throughput.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.