Abstract
Plasmodium vivax and P. cynomolgi produce numerous caveola-vesicle complex (CVC) structures within the surface of the infected erythrocyte membrane. These contrast with the electron-dense knob protrusions expressed at the surface of Plasmodium falciparum-infected erythrocytes. Here we investigate the three-dimensional (3-D) structure of the CVCs and the identity of a predominantly expressed 95 kDa CVC protein. Liquid chromatography - tandem mass spectrometry analysis of immunoprecipitates by monoclonal antibodies from P. cynomolgi extracts identified this protein as a member of the Plasmodium helical interspersed subtelomeric (PHIST) superfamily with a calculated mass of 81 kDa. We named the orthologous proteins PvPHIST/CVC-81(95) and PcyPHIST/CVC-81(95) , analysed their structural features, including a PEXEL motif, repeated sequences and a C-terminal PHIST domain, and show that PHIST/CVC-81(95) is most highly expressed in trophozoites. We generated images of CVCs in 3-D using electron tomography (ET), and used immuno-ET to show PHIST/CVC-81(95) localizes to the cytoplasmic side of the CVC tubular extensions. Targeted gene disruptions were attempted in vivo. The pcyphist/cvc-81(95) gene was not disrupted, but parasites containing episomes with the tgdhfr selection cassette were retrieved by selection with pyrimethamine. This suggests that PHIST/CVC-81(95) is essential for survival of these malaria parasites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.