Abstract

Fluid milk consumed in conjunction with resistance training (RT) provides additional protein and calcium, which may enhance the effect of RT on body composition. However, the literature on this topic is inconsistent with limited data in adolescents. Therefore, we examined the effects of a supervised RT program (6 mo, 3 d/ wk, 7 exercises, 40-85% 1-repetition maximum) with daily milk supplementation (24 oz/day, one 16-oz dose immediately post-RT) on weight, fat mass (FM), and fat-free mass (FFM) assessed via dual-energy X-ray absorptiometry (baseline, 3 mo, 6 mo) in a sample of middle-school students who were randomly assigned to 1 of 3 supplement groups: milk, isocaloric carbohydrate (100% fruit juice), or water (control). Thirty-nine boys and 69 girls (mean age = 13.6 yr, mean BMI percentile = 85th) completed the study: milk n = 36, juice n = 34, water n = 38. The results showed no significant differences between groups for change in body weight (milk = 3.4 ± 3.7 kg, juice = 4.2 ± 3.1 kg, water = 2.3 ±2.9 kg), FM (milk = 1.1 ±2.8 kg, juice = 1.6 ± 2.5 kg, water = 0.4 ±3.6 kg), or FFM (milk = 2.2 ± 1.9 kg, juice = 2.7 ± 1.9 kg, water = 1.7 ± 2.9 kg) over 6 mo. FFM accounted for a high proportion of the increased weight (milk = 62%, juice = 64%, water = 74%). These results from a sample of predominantly overweight adolescents do not support the hypothesis that RT with milk supplementation enhances changes in body composition compared with RT alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.