Abstract

Long-term (>10Myr) fluctuations in climate, sea-level and sedimentation have been documented in the stratigraphic record, but the lack of well-constrained data series has made it difficult to rigorously evaluate cyclic (periodic or quasi-periodic) changes at this scale. Here we utilize a new compilation of the coverage area of sedimentary rocks in North America to investigate the dominant modes (“orders”) of stratigraphic variability, and to evaluate potential long-period cyclic changes in sedimentation on the continent during the Phanerozoic. Our analysis resolves two principal temporal modes of variability: (1) a strongly sinusoidal mode with a periodicity of 56Myr+/−3Myr, and (2) a longer-term Phanerozoic mode (the “M-curve”, linked to the Wilson cycle), which is indistinguishable from a stochastic autoregressive process. The newly identified 56Myr cycle in sedimentation delineates most of the cratonic sequences that have previously been identified qualitatively in North America, but here we propose a quantitative redefinition that includes nine distinct units and two mega-sequences. The timing of the 56Myr beat in sedimentation is consistent with an orogenic oscillator source or an oscillatory dynamic in mantle convection, and its tempo is statistically similar to a known rhythm in number of marine animal genera in the global fossil record. Thus, the identification of a significant periodic signal in the sedimentary record of North America provides new evidence for an important tectonic- and/or mantle-scale cyclic process that links both large-scale biological evolution and physical environmental change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.