Abstract

A bristle-bot or vibrobot is a multi-legged robot made of bristles and an oscillating actuator that generates vibrations. This work presents the first demonstration of a micro-bristle-bot, with 3D-printed legs, fabricated by two-photon polymerization (TPP) lithography. The presented miniaturized bristle-bot has a weight of only 5 mg, in the size of 2 mm × 1.87 mm × 0.8 mm, and can achieve a speed up to 4 times the body length per second. A base structure with six legs is fabricated by TPP direct laser writing in a single fabrication step, allowing for rapid prototyping of various leg designs. The base is attached to a 0.3 mm thick lead zirconate titanite (PZT) actuator block. The vibrational energy is provided by an external piezoelectric shaker in this work, which mimics the ocillatory behavior of the on-board PZT block. This work demonstrates the locomotion of micro-bristle-bots with various leg designs that utilizes the resonant bending mode shape at small excitation voltages applied to the external piezoelectric shaker. The presented micro-bristle-bots show a resonant frequency around 6.3 kHz, which can be tailored based on their geometry. This feature allows for addressing individual micro-bristle-bots with various geometries based on their unique resonance frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.