Abstract

A distributed system is self-stabilizing if, regardless of its initial state, the system is guaranteed to reach a legitimate (i.e., correct) state in finite time. In 2007, Turau proposed the first linear-time self-stabilizing algorithm for the minimal dominating set (MDS) problem under an unfair distributed daemon [9]; this algorithm stabilizes in at most 9n moves, where n is the number of nodes in the system. In 2008, Goddard et al. [4] proposed a 5n-move algorithm. In this paper, we present a 4n-move algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.