Abstract

A 3-D time-domain numerical coupled model is developed to obtain an efficient method for nonlinear waves acting on a box-shaped ship fixed in a harbor. The domain is divided into the inner domain and the outer domain. The inner domain is the area beneath the ship and the flow is described by the simplified Euler equations. The remaining area is the outer domain and the flow is defined by the higher-order Boussinesq equations in order to consider the nonlinearity of the wave motions. Along the interface boundaries between the inner domain and the outer domain, the volume flux is assumed to be continuous and the wave pressures are equal. Relevant physical experiment is conducted to validate the present model and it is shown that the numerical results agree with the experimental data. Compared the coupled model with the flow in the inner domain governed by the Laplace equation, the present coupled model is more efficient and its solution procedure is simpler, which is particularly useful for the study on the effect of the nonlinear waves acting on a fixed box-shaped ship in a large harbor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.