Abstract

All-solid-state polymer electrolytes have received widespread attention due to their superior safety over liquid electrolytes that are prone to leaks. However, poor ionic conductivity and uncontrollable lithium dendrite growth have greatly limited the rapid development of polymer electrolytes. Hence, we report a composite polymer electrolyte combining a polyacrylonitrile (PAN) electrospun fiber membrane, flexible polydimethylsiloxane (PDMS) macromolecules and a polyethylene oxide (PEO) polymer. The introduction of PDMS with a highly flexible molecular chain, ultra-low glass transition energy and high free volume can help optimize lithium ion migration paths and improve the interface compatibility between the electrolyte and the electrode. In addition, the nano-network structure of the PAN nanofiber membrane can promote the interaction between adjacent polymer molecular chains and improve the mechanical properties of the composite electrolyte to suppress the lithium dendrite growth. The synergistic effect of the PDMS and PAN electrospun nanofiber membranes endows the composite electrolyte with superior ionic conductivity and excellent electrochemical stability towards lithium metal. The interface impedance of the Li/Li symmetric battery with the composite electrolyte after 15 days of continuous standing has no significant change compared with the initial state, and the battery can maintain stable cycling for 1200 h without short circuit under a dynamic current of 0.3 mA cm-2. The obtained composite polymer electrolyte has potential application prospects in the field of high-energy lithium metal batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.