Abstract

We present an automatic face recognition approach, which relies on the analysis of the three-dimensional facial surface. The proposed approach consists of two basic steps, namely a precise fully automatic normalization stage followed by a histogram-based feature extraction algorithm. During normalization the tip and the root of the nose are detected and the symmetry axis of the face is determined using a PCA analysis and curvature calculations. Subsequently, the face is realigned in a coordinate system derived from the nose tip and the symmetry axis, resulting in a normalized 3D model. The actual region of the face to be analyzed is determined using a simple statistical method. This area is split into disjoint horizontal subareas and the distribution of depth values in each subarea is exploited to characterize the face surface of an individual. Our analysis of the depth value distribution is based on a straightforward histogram analysis of each subarea. When comparing the feature vectors resulting from the histogram analysis we apply three different similarity metrics. The proposed algorithm has been tested with the FRGC v2 database, which consists of 4950 range images. Our results indicate that the city block metric provides the best classification results with our feature vectors. The recognition system achieved an equal error rate of 5.89% with correctly normalized face models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.