Abstract
Near-field acoustical holography (NAH) is an efficient noise diagnosis method with the deficiencies including wraparound error, which will increase when the spatial sampling rate is reduced below the minimum specified by Shannon-Nyquist theorem. Based on 3D convolutional neural network (3D-CNN) and stacked autoencoder (SAE), a method called CSA-NAH is proposed to reduce the wraparound error under sparse measuring. Subsequently, numerical calculations are carried out to illustrate the feasibility and performance of CSA-NAH. The results show that when holographic measurement point number is 64, average reconstruction error of CSA-NAH on an aluminum plate for sound pressure within 2000 Hz is 4.32%, while the latest existing methods is greater than 10%. For error in 1200 Hz~2000 Hz, the error is reduced from more than 15% of the existing methods to 5.5%. Therefore, the application of the proposed CSA-NAH can cut down the measuring cost by reducing the number of microphones without wraparound error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.