Abstract
This article presents a GaN driver operating at a switching frequency variable from 10 to 30 MHz to achieve reliable and efficient power conversion for automotive electronics applications. An active bootstrap (BST) balancing (ABB) technique is presented to stabilize the BST rail voltage by sensing V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SW</sub> and controlling BST rail charging. Meanwhile, a V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SW</sub> dual-edge dead-time (t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dead</sub> ) modulation senses instant V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">IN</sub> and I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> and generates optimal t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dead</sub> for V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SW</sub> trailing and leading edges, achieving zero-voltage switching (ZVS) turn-on for GaN power switches. To operate at high frequency and retain high efficiency, pulse-based dynamic upand down-level shifters are developed to achieve sub-nanosecond propagation delay with a quiescent current of 0.5 μA. To validate this work, a switching power converter prototype is implemented using a 0.35-μm highvoltage (HV) BCD process. It maintains a constant 5.1-V BST rail voltage to prevent GaN FET from destructive breakdown and accomplishes 0.9-to-3.7-ns t <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dead</sub> and 3.7-to-10.4-ns tdead for VSW trailing and leading edge, respectively, in response to load current I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> change from 0.01 to 1.2 A. The proposed techniques jointly improve the efficiency by 8.3%, which peaks at 90.7% for 12-to-5-V conversion and 88% for 40-to-5-V conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.