Abstract

Involution is a process whereby the mammary gland undergoes extensive tissue remodelling involving exquisitely coordinated cell death, extracellular matrix degradation and adipose tissue regeneration following the weaning of offspring. These processes are mediated in part through Jak/Stat signalling pathways, which can be deregulated in breast cancer. Synthetic in vitro analogues of the breast could become important tools for studying tumorigenic processes, or as personalized drug discovery platforms and predictors of therapeutic response. Ideally, such models should support 3D neo-tissue formation, so as to recapitulate physiological organ function, and be compatible with high-throughput screening methodologies. We have combined cell lines of epithelial, stromal and immunological origin within engineered porous collagen/hyaluronic acid matrices, demonstrating 3D-specific molecular signatures. Furthermore seeded cells form mammary-like branched tissues, with lobuloalveolar structures that undergo inducible involution phenotypes reminiscent of the native gland under hormonal/cytokine regulation. We confirm that autophagy is mediated within differentiated mammary epithelial cells in a Stat-dependent manner at early time points following the removal of a prolactin stimulus (H/WD). In addition, epithelial cells express markers of an M2 macrophage lineage under H/WD, a process that is attenuated with the introduction of the monocyte/macrophage cell line RAW 264.7. Thus, such 3D models are suitable platforms for studying cell-cell interactions and cell death mechanisms in relation to cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.