Abstract
In this paper, we prove that every plane graph without 5-circuits and without triangles of distance less than 3 is 3-colorable. This improves the main result of Borodin and Raspaud [Borodin, O. V., Raspaud, A.: A sufficient condition for planar graphs to be 3-colorable. Journal of Combinatorial Theory, Ser. B, 88, 17–27 (2003)], and provides a new upper bound to their conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.