Abstract

Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ICRF heating scenario's creating high energy tails. The present paper discusses an extension of the 1D TOMCAT wave equation solver [1] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response that is suitable for numerical application. This choice of variable yields symmetric and intuitive expressions, and guarantees that a positive definite power absorption is obtained for any of the wave modes in the plasma. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro‐differential approach is proposed. To keep the required computation time for this generalized description reasonable tabulation of integrals is intensively used. An example is provided to illustrate the potential of the new wave code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.