Abstract
A 36 mm/sup 2/ graphics processor with fixed-point programmable vertex shader is designed and implemented for portable two-dimensional (2-D) and three-dimensional (3-D) graphics applications. The graphics processor contains an ARM-10 compatible 32-bit RISC processor,a 128-bit programmable fixed-point single-instruction-multiple-data (SIMD)vertex shader, a low-power rendering engine, and a programmable frequency synthesizer (PFS). Different from conventional graphics hardware, the proposed graphics processor implements ARM-10 co-processor architecture with dual operations so that user-programmable vertex shading is possible for advanced graphics algorithms and various streaming multimedia processing in mobile applications. The circuits and architecture of the graphics processor are optimized for fixed-point operations and achieve the low power consumption with help of instruction-level power management of the vertex shader and pixel-level clock gating of the rendering engine. The PFS with a fully balanced voltage-controlled oscillator (VCO) controls the clock frequency from 8 MHz to 271 MHz continuously and adaptively for low-power modes by software. The chip shows 50 Mvertices/s and 200 Mtexels/s peak graphics performance, dissipating 155 mW in 0.18-/spl mu/m 6-metal standard CMOS logic process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.