Abstract
A 15-50-GHz two-port quasi-optical scalar network analyzer consisting of a transmitter and receiver built in a planar technology is presented. The network analyzer is based on a Schottky-diode multiplier and mixer integrated inside a planar antenna and fed differentially by a coplanar waveguide transmission line. The antenna is placed on an extended hemispherical high-resistivity silicon substrate lens. The local oscillator signal is swept from 3 to 5 GHz and high-order harmonic mixing in both the up- and down-conversion mode is used to realize the RF bandwidth. The network analyzer has a dynamic range of >;50 dB in a 1-kHz bandwidth, and was successfully used to measure frequency-selective surfaces with <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> =20, 30, and 40 GHz and a second-order bandpass response. Furthermore, the system was built with circuits and components for easy scaling to millimeter-wave frequencies, which is the primary motivation for this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.