Abstract

This paper presents a 13C CP/MAS NMR study of the melanin pigments obtained through natural synthetic origins: sepia-melanin from squid ink and three synthetic 5,6-dihydroxyindole-melanins prepared using different non-enzymatic oxidation pathways. The synthetic pigments can be distinguished from natural melanin by the absence of aliphatic carbons, thereby confirming the unreacted 3,4-dihydroxyphenylalanine and the proteinaceous origins of the aliphatic resonances in natural eumelanin. The spectra of selected non-protonated carbon resonances and those with only protonated carbon signals led to a quantitative analysis. An auto-oxidative experiment using a synthetic melanin, over a period of 130 h, has shown an usually slow disappearance of hydrogen peroxide formed in situ. The 13C-NMR spectrum of the insoluble oxidized synthetic melanin compared to that before auto-oxidation clearly demonstrates that the oxidation process is associated with chemical changes within the pigment; i.e., carbonyl functional group formation and an increase of the non-protonated carbons fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.