Abstract

Properties of two-photon response in a [111]-cut nearly-intrinsic Si hemisphere photodetector are studied. The measured photocurrent of the photodetector responding to the 1.32μm continuous wave laser shows a quadratic dependence on the coupled optical power and is saturated with the bias voltage. Also, the photocurrent is independent of polarization. Such properties are in good agreement with the theory of two-photon absorption. The isotropic photocurrent generated from the [111]-cut Si hemisphere is compared to the anisotropic one induced in the [110]-cut Si sample and the ratio of χxxxx/χxxyy for silicon performing at 1.32 μm is calculated to be 2.4 via the fitted function of the anisotropic photocurrent from the [110]-cut sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.