Abstract

A high-speed physical-layer architecture for next-generation higher-speed Ethernet for VSR and backplane applications was developed. VSR and backplane networks provide 100-Gb/s data transmission in mega data centers and blade servers, which have new and broad potential markets of LAN technologies. It supports 100-Gb/s-throughput, high-reliability, and low-latency data transmission, making it well suited to VSR and backplane applications for intra-building and intra-cabinet networks. Its links comprise ten 10-Gb/s high-speed serial lanes. Payload data are transmitted by ribbon fiber cables for very short reach and by copper channels for the backplane board. Ten lanes convey 320-bit data synchronously (32 bits x 10 lanes) and parity data of forward-error correction code (newly developed (544, 512) code FEC), providing highly reliable (BER<1E-22) data transmission with a burst-error correction with low latency (31.0 ns on the transmitter (Tx) side and 111.6 ns on the receiver (Rx) side). A 64B/66B code-sequence-based skew compensation mechanism, which provides low-latency compensation for the lane-to-lane skew (less than 51ns), is used for parallel transmission. Testing this physical-layer architecture in an ASIC showed that it can provide 100-Gb/s data transmission with a 772-kgate circuit, which is small enough for implementation in a single LSI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.