Abstract

This brief presents a conductance-based neuron that is capable of operating under ultra-low-voltage supplies. The proposed neuron employs a variable-gain low-pass filter to linearly integrate the input spikes onto the membrane capacitance. A positive feedback topology is used to generate output spikes and implement a frequency adaption mechanism. A differential amplifier is as well employed as a comparator to reset the membrane potential and set a threshold voltage to control the spike generator circuit. The mathematical analyses result in a first-order linear equation for membrane current of the neuron. The designed neuron was fabricated in TSMC 0.18 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS technology with an area of 993 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}^{2}$ </tex-math></inline-formula> that consumes 135 fJ/spike under a 0.3-V supply voltage. The experimental results show frequency adaption mechanism and intrinsic chattering, while regular and fast-firing behaviors are achieved by adjusting control parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.