Abstract

The possibility to functionalize calcium phosphates with bioactive agents is a promising strategy to design innovative biomaterials for bone repair able to couple the bioactive properties of the inorganic compounds with the therapeutic effect of the functionalizing agent. The R enantiomer of the 9-hydroxystearic acid, (9R)-9-HSA, produced from Dimorphotheca sinuata L. seeds, has proven to act as a natural negative regulator of tumor cell proliferation. On this basis, hydroxyapatite was synthesized with increasing contents of (9R)-9-hydroxystearate, up to ∼8.6 wt %. The incorporation of HSA in the composite nanocrystals induces a reduction of the crystal mean dimensions and of the length of the coherently scattering crystalline domains, which suggest a preferential adsorption onto the hydroxyapatite crystal faces parallel to the c-axis direction. The composite nanocrystals were designed so that their cytostatic and cytotoxic effects toward osteosarcoma cells were modulated by hydroxystearate content. In fact, results of in vitro tests show that the presence of HSA in the composite nanocrystals provokes a significant decrease in SaOS2 osteosarcoma cells proliferation and viability as well as an increase in lactate dehydrogenase, tumor necrosis factor α, and caspase 3 levels, with a cytotoxic effect increasing with HSA content in the nanocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.