Abstract

Hydrogenation of CO2 into methanol using the H2 produced from renewable energy is a promising way for carbon capture and utilization. Therefore, the methanol synthesis catalysts with high methanol selectivity are highly desired. In this work, we found that the methanol selectivity of In2O3 catalyst can be significantly enhanced by introducing a small amount of Pt. Methanol selectivity can be increased from 72.2% (In2O3) to 91.1% (0.58 wt.% Pt/In2O3) at 220 °C. The introduced Pt atoms are doped into the In2O3, forming atomically dispersed Ptn+ species, most of which are stable under working conditions. It is proposed that the atomically dispersed Ptn+ species are responsible for the enhanced methanol selectivity, while Pt nanoparticles on In2O3 mainly boost the reverse water-gas shift reaction (CO2 + H2 → CO + H2O).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.