Abstract

Tungsten heavy alloys are used for a number of applications, including radiation shields, counter weights, electrical contacts, vibration dampeners and kinetic energy penetrators. The most common compositions consist of W along with some combination of Ni, Fe, or Cu. The alloys are usually fabricated by the conventional powder metallurgy technique, in which the elemental blended powders are first compacted and then followed by a high temperature sintering. An important processing goal for this alloy is to obtain a high density with fine grain size. It is therefore desirable to predict its densification behavior and final density. Recently, the master sintering curve (MSC) theory provides a better understanding of whole sintering process. In previous work, the densification and grain growth mechanisms during spark plasma sintering (SPS) of 93W-5.6Ni-1.4Fe heavy alloy were investi-

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.