Abstract

8-Hydroxy-2'-deoxyguanosine (8-OH-dG) is 1 of the most abundant oxidative products of cellular DNA. Accumulation of impaired 8-OH-dG could lead to increased genomic instability that in turn could lead to a more malignant phenotypic behavior of tumors. Therefore, the effects of 8-OH-dG on survival in 99 resected nonsmall-cell lung cancer (NSCLC) patients was evaluated. The enzyme-linked immunosorbent assay was applied to measure the levels of 8-OH-dG in tumor DNA. The median levels of 8-OH-dG were 6.5 pmol/microg for all study subjects. Patients with low levels of 8-OH-dG had significantly longer survival times compared with those with high levels of 8-OH-dG (log-rank test: P < .001). In Cox regression analysis, patients with high levels of 8-OH-dG had an over 3-fold increased hazard of death. In addition, a statistically significant correlation between levels of 8-OH-dG and age was noted (rho = 0.206, P = .048). Furthermore, we observed a genotype-phenotype modification between hOGG1 gene polymorphism (Ser326Cys) and levels of 8-OH-dG. The results demonstrated that levels of 8-OH-dG could predict survival in resected NSCLC patients. It is postulated that an intact base excision repair mechanism may reduce the accumulation of oxidative DNA damage that is thought to contribute to the tumor's malignant potential and therefore the risk of death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.